metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A novel copper(II) coordination polymer with 2,2'-bipyridyl-3,3'-dicarboxylic acid

Bao-Zhong Zhao,^a* Xiang-Rong Hao,^b Zhan-Gang Han,^a Qiang Fu^a and Ya-Guang Chen^a

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and ^bDepartment of Chemistry, Tong Hua Teachers' College, Tong Hua 134002, People's Republic of China Correspondence e-mail: zhaobz@nenu.edu.cn

Received 15 September 2004 Accepted 8 November 2004 Online 18 December 2004

A novel copper(II) coordination polymer, poly[[[aquacopper(II)]- μ_3 -2,2'-bipyridyl-3,3'-dicarboxylato- $\kappa^4 N, N':O:O'$] dihydrate], {[Cu(C₁₂H₆N₂O₄)(H₂O)]·2H₂O}_n, was obtained by the reaction of CuCl₂·2H₂O and 2,2'-bipyridyl-3,3'-dicarboxylic acid (H₂L) in water. In the molecule, each Cu^{II} atom is five-coordinated and lies at the centre of a square-pyramidal basal plane, bridged by three L ligands to form a two-dimensional (4,4)-network. Each L moiety acts as a bridging tetradentate ligand, coordinating to three Cu^{II} atoms through its two aromatic N atoms and two O atoms of the two carboxyl groups. The two-dimensional square-grid sheets superimpose in an off-set fashion through the inorganic water layer.

Comment

In recent years, research on coordination polymers has expanded rapidly, because of their fascinating structural diversity and potential application as functional materials (Batten & Robson, 1998; Moulton & Zaworotko, 2001). To date, a number of one-, two- and three-dimensional infinite frameworks have been generated with linear N,N'-bidentate spacers (Tong et al., 2002). Much of the work has so far been focused on coordination polymers with rigid ligands, such as 4,4'-bipyridine, and pyrazine and its analogues. However, flexible ligands such as 2,2'-bipyridyl-3,3'-dicarboxylic acid (H_2L) have not been explored as much and only a few examples have been reported to date (Goddard et al., 1990; Kovalev et al., 1989; Memon et al., 1997; Perkovic, 2000; Xie et al., 1999, 2000; Yoo et al., 1997; Zhang et al., 2002, 2003; Zhong et al., 1994). In these known structures based on the 2,2'bipyridyl-3,3'-dicarboxylate anion, most are one-dimensional polymeric chains, such as $[M(C_{12}H_6N_2O_4)(H_2O_2)]_n$ (M is Co, Cu or Mn) and $\{[Ni(C_{12}H_6N_2O_4)(H_2O_3] \cdot H_2O]_n$. These onedimensional chains extend into two-dimensional sheets via

 $O \cdots H - O$ hydrogen-bonding interactions. Two- or threedimensional structures of this type based on covalent linkages are rare. In the present work, we report the preparation and crystal structure of the title novel two-dimensional coordination polymer, (I), formulated as {[CuL(H₂O)]·2H₂O}_n.

Single-crystal X-ray diffraction reveals that the molecules of (I) form an extended two-dimensional network involving coordination frameworks of (4,4)-topology. In these layers, all the metal centres are five-coordinated. As shown in Fig. 1, each Cu^{II} atom is coordinated by two N atoms of an *L* ligand,

A view of the local coordination of the Cu^{II} atom in (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$.]

The two-dimensional single-layer (4,4)-network in (I). Water molecules have been omitted for clarity.

 $D_x = 1.861 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 6856

2498 independent reflections 1871 reflections with $I > 2\sigma(I)$

reflections $\theta = 3.2-25.5^{\circ}$ $\mu=1.77~\mathrm{mm}^{-1}$ T = 293 (2) KPrism, dark green $0.24 \times 0.23 \times 0.11 \text{ mm}$

 $R_{\rm int}=0.045$ $\theta_{\rm max} = 26.0^{\circ}$ $h = -8 \rightarrow 7$ $k = -24 \rightarrow 20$ $l = -11 \rightarrow 11$

A view perpendicular to the two-dimensional sheets, showing the stacking of these layers in the b direction. Hydrogen-bonding contacts are indicated by dashed lines.

two O atoms of two carboxyl groups from another two L ligands and one O atom of a water molecule, giving a squarepyramidal geometry (Table 1). An additional carboxyl O atom occupies the sixth coordination site at a distance $[Cu1 \cdots O1 =$ 3.060 (1) Å] which is beyond the sum of the van der Waals radii of Cu and O (1.40 Å for Cu and 1.52 Å for O) and which is therefore too long to be considered a significant interaction.

Each L moiety, acting as a tetradentate ligand, coordinates to three Cu^{II} atoms. As a result, three Cu^{II} centres are bridged by three L ligands to form a grid (Fig. 2). Within this grid, the Cu...Cu distances are 6.767 (5), 6.908 (5) and 6.967 (1) Å. One Cu atom with one organic ligand constructs a node and these nodes connect to each other to form an extended layer structure with (4,4)-topology in the ac plane. As illustrated in Fig. 3, the water molecules occupy channels formed by parallel stacking of two layers.

There are a number of significant contacts between the oxo groups of the two-dimensional layers and the water molecules. These include $O5W \cdot \cdot \cdot O4^{i} = 2.819(5), O5W \cdot \cdot \cdot O3^{i} = 2.880(4),$ $O6W \cdots O1^{ii} = 2.769 (4), O6W \cdots O5W^{iii} = 3.094 (4),$ $O6W \cdots O6W^{iv} = 3.199(5), O7W \cdots O2^{ii} = 2.915(5),$ $O7W \cdots O4^{ii} = 2.971$ (4) and $O7W \cdots O7^{v} = 2.800$ (6) Å [symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$; (iii) 1 - x, 1 - y, 1 - z; (vi) 2 - x, 1 - y, 1 - z; (v) 1 - x, 1 - y, 2 - z]. Therefore, the extended structure of (I) has the metal-organic layers and inorganic water layers arranged alternately along the b axis.

Experimental

A mixture of CuCl₂·2H₂O (0.168 g, 1 mmol) and H₂L (0.244 g, 1 mmol) in water (30 ml) was refluxed for 20 min and then filtered while hot. Dark-green crystals of (I) were obtained by evaporating the filtrate at room temperature for a period of three weeks. The compound is insoluble in common organic solvents and dissolves in water very slowly. Analysis found: C 40.1, H 3.2, N 8.0%; C₁₂H₁₂CuN₂O₇ requires: C 40.0, H 3.3, N 7.8%.

Crystal data

Crystat aata
$[Cu(C_{12}H_6N_2O_4)(H_2O)] \cdot 2H_2O$ M = 359.78
Monoclinic, $P2_1/n$
a = 6.7680 (9) Å
b = 19.989(3) Å
c = 9.4923 (12) Å
$\beta = 90.717 \ (2)^{\circ}$
V = 1284.0 (3) A ³
Z = 4
Data collection
Rigaku R-AXIS RAPID area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.628, \ T_{\max} = 0.812$
7065 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2]$
$wR(F^2) = 0.094$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.95	$(\Delta/\sigma)_{\rm max} = 0.001$
2498 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
199 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-O3 ⁱ	1.966 (2)	Cu1-N1	2.034 (3)
Cu1 - O5W	1.979 (3)	Cu1-O2 ⁱⁱ	2.411 (2)
Cu1-N2	1.999 (3)		
$O3^i - Cu1 - O5W$	93.74 (10)	N2-Cu1-N1	79.75 (10)
O3 ⁱ -Cu1-N2	90.27 (9)	$O3^{i}-Cu1-O2^{ii}$	92.60 (9)
O5W-Cu1-N2	175.79 (11)	O5W-Cu1-O2 ⁱⁱ	91.49 (11)
O3 ⁱ -Cu1-N1	162.38 (10)	N2-Cu1-O2 ⁱⁱ	87.05 (9)
O5W-Cu1-N1	96.68 (11)	$N1-Cu1-O2^{ii}$	101.27 (10)

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$.

All H atoms on C atoms were generated geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms of the two solvate water molecules and the water ligand could not be located.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

This work was supported by the Chinese National Science Fund (grant No. 39970842).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1177). Services for accessing these data are described at the back of the journal.

References

Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494. Goddard, R., Hemalatha, B. & Rajasekharan, M. V. (1990). Acta Cryst. C46, 33-35

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Kovalev, V. V., Makhonina, E. V., Falkengol, A. T., Pervov, V. S., Bogdanovskaya, V. A. & Tarasevich, M. R. (1989). Sov. J. Coord. Chem. Engl. 15, 637–641.
- Memon, S., Rajasekharan, M. V. & Tuchagues, J. P. (1997). Inorg. Chem. 36, 4341–4346.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Perkovic, M. W. (2000). Inorg. Chem. 39, 4962-4968.
- Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Tong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). *Inorg. Chem.* 41, 4846–4848.
- Xie, P. H., Hou, Y. J., Wei, T. X., Zhang, B. W., Cao, Y. H. & Huang, C. H. (2000). *Inorg. Chim. Acta*, **308**, 73–79.
- Xie, P. H., Hou, Y. J., Zhang, B. W., Cao, Y. & Wu, F. (1999). J. Chem. Soc. Dalton Trans. pp. 4217–4222.
- Yoo, J., Kim, J. H., Sohn, Y. H. & Do, Y. (1997). Inorg. Chim. Acta, 263, 53–60.
- Zhang, G.-H., Wei, Y.-G., Wang, P. & Guo, H.-Y. (2002). Acta Cryst. C58, m605–m607.
- Zhang, H.-T., Shao, T., Wang, H.-Q. & You, X.-Z. (2003). Acta Cryst. C59, m259–m261.
- Zhong, Z. J., You, X. Z. & Yang, Q. C. (1994). Polyhedron, 13, 1951-1955.